Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA (review).
نویسندگان
چکیده
SHH, IHH, and DHH are lipid-modified secreted proteins binding to Patched receptors, and CDON, BOC or GAS1 co-receptors. In the absence of Hedgehog signaling, GLI1 is transcriptionally repressed, GLI2 is phosphorylated by GSK3 and CK1 for the FBXW11 (betaTRCP2)-mediated degradation, and GLI3 is processed to a cleaved repressor. In the presence of Hedgehog signaling, Smoothened is relieved from Patched-mediated suppression due to the Hedgehog-dependent internalization of Patched, which leads to MAP3K10 (MST) activation and SUFU inactivation for the stabilization and nuclear accumulation of GLI family members. GLI activators then upregulate CCND1, CCND2 for cell cycle acceleration, FOXA2, FOXC2, FOXE1, FOXF1, FOXL1, FOXP3, POU3F1, RUNX2, SOX13, TBX2 for cell fate determination, JAG2, INHBC, and INHBE for stem cell signaling regulation. Hedgehog signals also upregulate SFRP1 in mesenchymal cells for WNT signaling regulation. Epithelial-to-mesenchymal transition (EMT) during embryogenesis, adult tissue homeostasis and carcinogenesis is characterized by class switch from E-cadherin to N-cadherin. SNAI1 (Snail), SNAI2 (Slug), SNAI3, ZEB1, ZEB2 (SIP1), KLF8, TWIST1, and TWIST2 are EMT regulators repressing CDH1 gene encoding E-cadherin. Hedgehog signals induce JAG2 upregulation for Notch-CSL-mediated SNAI1 upregulation, and also induce TGFbeta1 secretion for ZEB1 and ZEB2 upregulation via TGFbeta receptor and NF-kappaB. TGFbeta-mediated downregulation of miR-141, miR-200a, miR-200b, miR-200c, miR-205, and miR-429 results in upregulation of ZEB1 and ZEB2 proteins. Hedgehog signaling activation indirectly leads to EMT through FGF, Notch, TGFbeta signaling cascades, and miRNA regulatory networks. miRNAs targeted to stem cell signaling components or EMT regulators are potent drug targets; however, off-target effects should be strictly controlled before clinical application of synthetic miRNA. Peptide mimetic and RNA aptamer could also be utilized as Hedgehog signaling inhibitors or EMT suppressors.
منابع مشابه
Epithelial to mesenchymal transition concept in Cancer: Review article
Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...
متن کاملMolecular Signaling in Tumorigenesis of Gastric Cancer
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens...
متن کاملEpithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies.
OBJECTIVE The mechanisms of cancer metastasis have been intensely studied recently and may provide vital therapeutic targets for metastasis prevention. We sought to review the contribution of epithelial-mesenchymal transition and the tumor microenvironment to cancer metastasis. SUMMARY BACKGROUND DATA Epithelial-mesenchymal transition is the process by which epithelial cells lose cell-cell ju...
متن کاملAn overview of hedgehog signaling in fibrosis.
The Hedgehog (Hh) signaling pathway plays a key role during embryogenesis and tissue regeneration. Recently, studies revealed that overactivated Hh signaling leads to fibrogenesis in many types of tissues. The activation of Hh signaling is involved in the epithelial-mesenchymal transition and excessive extracellular matrix deposition. Blockade of Hh signaling abolishes the induction of the epit...
متن کاملClinical Implications of Hedgehog Pathway Signaling in Prostate Cancer
Activity in the Hedgehog pathway, which regulates GLI-mediated transcription, is important in organogenesis and stem cell regulation in self-renewing organs, but is pathologically elevated in many human malignancies. Mutations leading to constitutive activation of the pathway have been implicated in medulloblastoma and basal cell carcinoma, and inhibition of the pathway has demonstrated clinica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2008